
0421 - HW, #1

The circle graph at the right gives the percent composition for a blue solid. What is the empirical formula for this solid?

element	by .	mass in 100 g sample	molar mass (g/mol)	mol in 100 g sample	normalize (divide by smallest number)	convert to whole numbers
0	63.16%	63.16	15.999	3.948	1.50	3.00
N	36.84%	36.84	14.007	2.630	1.00	2.00

Empirical Formula is N₂O₃

Determine the empirical formula for a compound that contains 35.98% aluminum and 64.02% sulfur.

element	% comp by element	mass in 100 g sample	molar mass (g/mol)	I MAIIN	(divide by	convert to whole numbers
Al	35.98%	35.98	26.982	1.333	1.00	2.00
S	64.02%	64.02	32.065	1.997	1.50	3.00

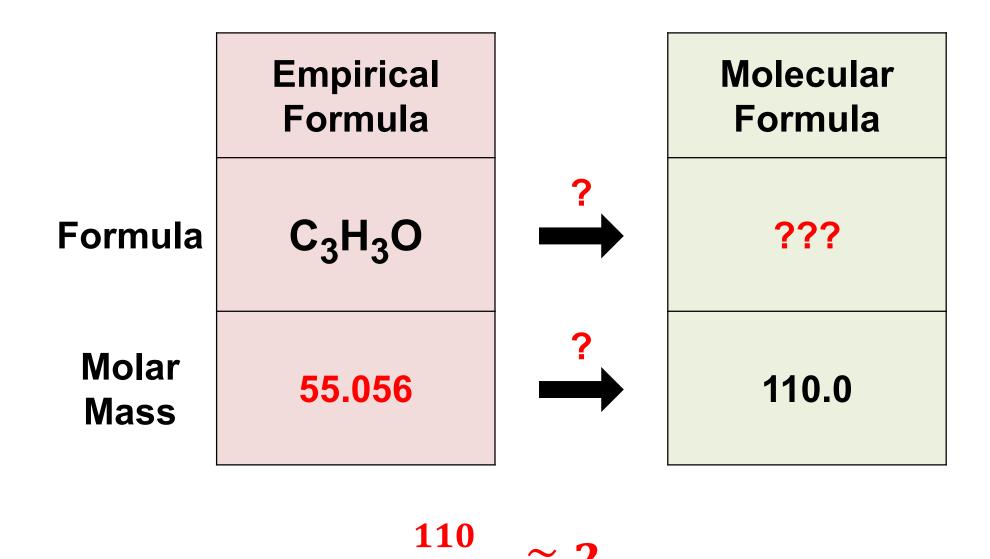
Empirical Formula is Al₂S₃

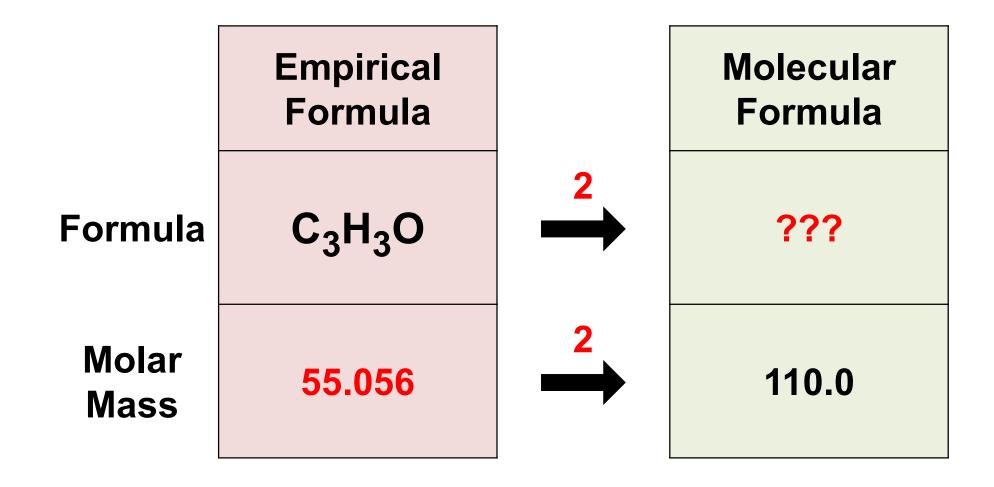
When an oxide of potassium is decomposed, 19.55 g of K and 4.00 g of O are obtained. What is the empirical formula of the compound?

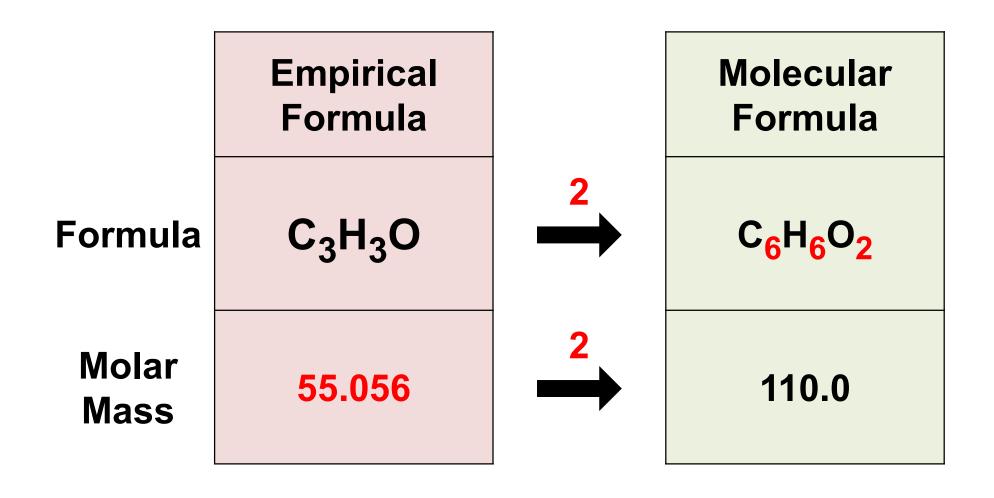
element	mass (g)	molar mass (g/mol)	mol in 100 g sample	normalize (divide by smallest number)
K	19.55	39.098	0.5000	2.000
0	4.00	15.999	0.250	1.00

Empirical Formula is K₂O

Analysis of a chemical used in photographic developing fluid yielded the percent composition data in the circle graph to the right. If the chemical's molar mass is 110.0 g/mol, what is the molecular formula?

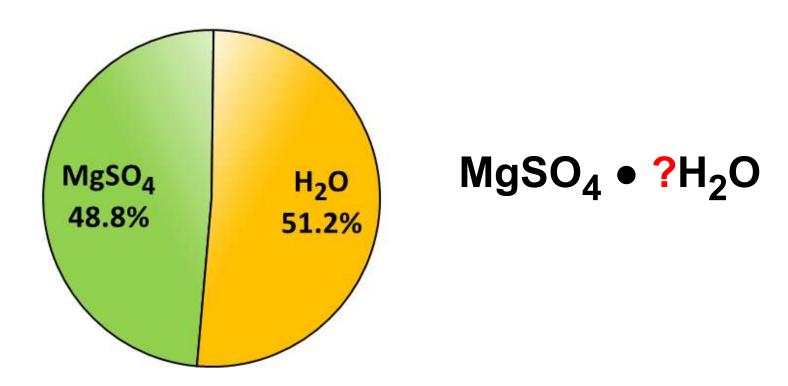



element	% comp by element	mass in 100 g sample	molar mass (g/mol)	mol in 100 g sample	normalize (divide by smallest number)	round to whole numbers
С	65.45%	65.45	12.011	5.449	3.00	3
Н	5.45%	5.45	1.008	5.407	2.97	3
0	29.09%	29.09	15.999	1.818	1.00	1


Empirical Formula is C_3H_3O

Empirical Molecular **Formula Formula** C_3H_3O **Formula** ??? Molar 110.0 ??? Mass

element	number of each element	molar mass	mass of each element
С	3	12.011	36.033
Н	3	1.008	3.024
0	1	15.999	15.999



The molecular formula is $C_6H_6O_2$

0421 - HW, #5

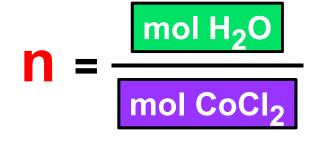
The composition of a hydrate is given in the circle graph shown below. What is the formula of this hydrate?

compound	% comp	mass in 100 g sample	molar mass	I MAIIN	normalize (divide by smallest number)	I ralina ta I
MgSO ₄	48.8%	48.8				
H ₂ O	51.2%	51.2				

element	number of each element	molar mass	mass of each element
Mg	1	24.305	24.305
S	1	32.065	32.065
0	4	15.999	63.996

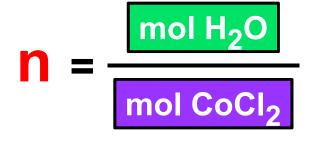
element	number of each element	molar mass	mass of each element
Н	2	1.008	2.016
0	1	15.999	15.999

$$\frac{48.8 \text{ g}}{120.366 \text{ g}} = 0.405 \text{ mol}$$

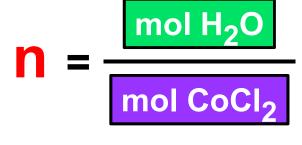

$$\frac{51.2 \text{ g}}{18.015 \text{ g}} = 2.84 \text{ mol}$$

compound	% comp by cpd	mass in 100 g sample	molar mass	molin	normalize (divide by smallest number)	rollna to i
MgSO ₄	48.8%	48.8	120.366			
H ₂ O	51.2%	51.2	18.015			

The hydrate formula is MgSO₄ ● 7H₂O


An 11.75 g sample of a common hydrate of cobalt (II) chloride is heated. After heating, 0.0712 mol of anhydrous cobalt (II) chloride remains. What is the formula of this hydrate?

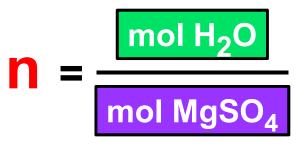
cpd	mass	molar mass	moles
CoCl ₂ • nH ₂ O			
CoCl ₂			
H ₂ O			


element	number of each element	molar mass	mass of each element
Со	1	58.933	58.933
CI	2	35.453	70.906

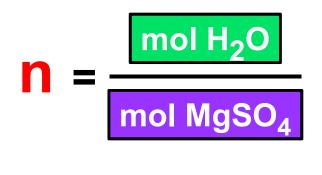
cpd	mass of cpd (g)	molar mass (g/mol)	amount of cpd (mol)
CoCl ₂ • nH ₂ O	11.75		
CoCl ₂			0.0712
H ₂ O			

element	number of each element	molar mass	mass of each element
Н	2	1.008	2.016
0	1	15.999	15.999

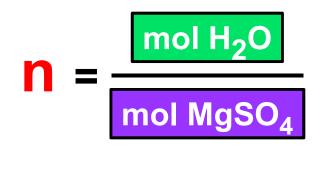
cpd	mass of cpd (g)	molar mass of cpd (g/mol)	amount of cpd (mol)
CoCl ₂ • nH ₂ O	11.75		
CoCl ₂	9.24	129.839	0.0712
H ₂ O	2.51		

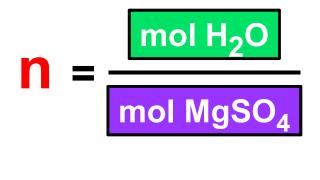

The hydrate formula is CoCl₂ • 2H₂O

cpd	mass of cpd (g)	molar mass (g/mol)	amount of cpd (mol)
CoCl ₂ • nH ₂ O	11.75		
CoCl ₂	9.24	129.839	0.0712
H ₂ O	2.51	18.015	0.139

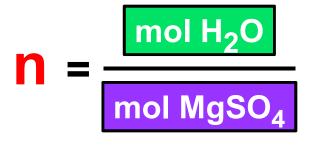

$$n = \frac{0.139 \text{ mol}}{0.0712 \text{ mol}}$$

Do Now

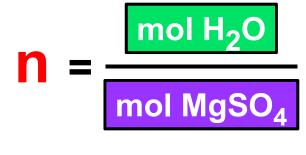

cpd	mass	molar mass	moles
MgSO ₄ ● nH ₂ O			
MgSO ₄			
H ₂ O			


cpd	mass	molar mass	moles
MgSO ₄ ● nH ₂ O	33.767		
MgSO ₄			
H ₂ O			

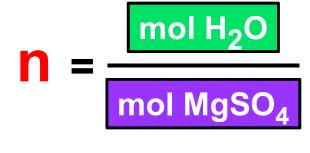
cpd	mass	molar mass	moles
MgSO ₄ ● nH ₂ O	33.767		
MgSO ₄	16.490		
H ₂ O			



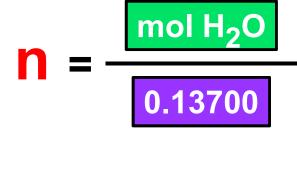
cpd	mass	molar mass	moles
MgSO ₄ ● nH ₂ O	33.767		
MgSO ₄	16.490		
H ₂ O	17.277		


element	number of each element	molar mass	mass of each element
Mg	1.000	24.305	24.305
S	1.000	32.065	32.065
0	4.000	15.999	63.996

cpd	mass	molar mass	moles
MgSO ₄ ● nH ₂ O	33.767		
MgSO ₄	16.490		
H ₂ O	17.276		


element	number of each element	molar mass	mass of each element
Mg	1.000	24.305	24.305
S	1.000	32.065	32.065
0	4.000	15.999	63.996

cpd	mass	molar mass	moles
MgSO ₄ ● nH ₂ O	33.767		
MgSO ₄	16.490	120.366	
H ₂ O	17.276		


element	number of each element	molar mass	mass of each element
Mg	1.000	24.305	24.305
S	1.000	32.065	32.065
0	4.000	15.999	63.996

cpd	mass	molar mass	moles
MgSO ₄ ● nH ₂ O	33.767		
MgSO ₄	16.490	120.366	0.13700
H ₂ O	17.276		

element	number of each element	molar mass	mass of each element
Mg	1.000	24.305	24.305
S	1.000	32.065	32.065
0	4.000	15.999	63.996

cpd	mass	molar mass	moles
MgSO ₄ ● nH ₂ O	33.767		
MgSO ₄	16.490	120.366	0.13700
H ₂ O	17.276		

element	number of each element	molar mass	mass of each element
Н	2	1.008	2.016
0	1	15.999	15.999

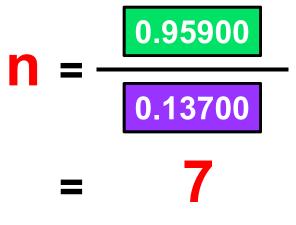
cpd	mass	molar mass	moles
MgSO ₄ ● nH ₂ O	33.767		
MgSO ₄	16.490	120.366	0.13700
H ₂ O	17.276		

element	number of each element	molar mass	mass of each element
Н	2	1.008	2.016
0	1	15.999	15.999

cpd	mass	molar mass	moles
MgSO ₄ ● nH ₂ O	33.767		
MgSO ₄	16.490	120.366	0.13700
H ₂ O	17.276	18.015	

element	number of each element	molar mass	mass of each element
Н	2	1.008	2.016
0	1	15.999	15.999

cpd	mass	molar mass	moles
MgSO ₄ ● nH ₂ O	33.767		
MgSO ₄	16.490	120.366	0.13700
H ₂ O	17.276	18.015	0.95900


$$n = \frac{\text{mol H}_2O}{0.13700}$$

element	number of each element	molar mass	mass of each element
Н	2	1.008	2.016
0	1	15.999	15.999

cpd	mass	molar mass	moles
MgSO ₄ ● nH ₂ O	33.767		
MgSO ₄	16.490	120.366	0.13700
H ₂ O	17.276	18.015	0.95900

The hydrate formula is MgSO₄ • 7H₂O

cpd	mass	molar mass	moles
MgSO ₄ ● nH ₂ O	33.767		
MgSO ₄	16.490	120.366	0.13700
H ₂ O	17.276	18.015	0.95900

