0421 - HW, \#1

The circle graph at the right gives the percent composition for a blue solid. What is the empirical formula for this solid?

element	\% comp by element	mass in 100 g sample	molar mass (g/mol)	mol in 100 g sample	normalize (divide by smallest number)	convert to whole numbers
O	63.16%	63.16	15.999	3.948	1.50	3.00
N	36.84%	36.84	14.007	2.630	1.00	2.00

Empirical Formula is $\mathbf{N}_{2} \mathrm{O}_{3}$

0421 - HW, \#2

Determine the empirical formula for a compound that contains 35.98% aluminum and 64.02% sulfur.

element	\% comp by element	mass in 100 g sample	molar mass $(\mathrm{g} / \mathrm{mol})$	mol in 100 g sample	normalize (divide by smallest number)	convert to whole numbers
Al	35.98%	35.98	26.982	1.333	1.00	2.00
S	64.02%	64.02	32.065	1.997	1.50	3.00

Empirical Formula is $\mathrm{Al}_{2} \mathrm{~S}_{3}$

0421 - HW, \#3

When an oxide of potassium is decomposed, 19.55 g of K and 4.00 g of O are obtained. What is the empirical formula of the compound?

element	mass (g)	molar mass $(\mathrm{g} / \mathrm{mol})$	mol in 100 g sample	normalize (divide by smallest number)
K	19.55	39.098	0.5000	2.000
O	4.00	15.999	0.250	1.00

Empirical Formula is $\mathrm{K}_{2} \mathrm{O}$

0421 - HW, \#4

Analysis of a chemical used in photographic developing fluid yielded the percent composition data in the circle graph to the right. If the chemical's molar mass is $110.0 \mathrm{~g} / \mathrm{mol}$, what is the molecular formula?

element	\% comp by element	mass in 100 g sample	molar mass (g/mol)	mol in 100 g sample	normalize (divide by smallest number)	round to whole numbers
C	65.45%	65.45	12.011	5.449	3.00	3
H	5.45%	5.45	1.008	5.407	2.97	3
O	29.09%	29.09	15.999	1.818	1.00	1

Empirical Formula is $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}$

element	number of each element	molar mass	mass of each element
C	3	12.011	36.033
H	3	1.008	3.024
O	1	15.999	15.999

55.056

$$
\frac{110}{55.056} \cong 2
$$

The molecular formula is $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2}$

0421 - HW, \#5

The composition of a hydrate is given in the circle graph shown below. What is the formula of this hydrate?

$\mathrm{MgSO}_{4} \bullet ? \mathrm{H}_{2} \mathrm{O}$

compound	$\%$ comp by cpd	mass in 100 g sample	molar mass	mol in 100 g sample	normalize (divide by smallest number)	round to whole numbers
MgSO_{4}	48.8%	48.8				
$\mathrm{H}_{2} \mathrm{O}$	51.2%	51.2				

element	number of each element	molar mass	mass of each element
Mg	1	24.305	24.305
S	1	32.065	32.065
O	4	15.999	63.996
120.366			

element	number of each element	molar mass	mass of each element
H	2	1.008	2.016
O	1	15.999	15.999
18.015			

48.8 g	1 mol
	120.366 g

$$
0.405 \mathrm{~mol}
$$

51.2 g	1 mol
	18.015 g

compound	$\%$ comp by cpd	mass in 100 g sample	molar mass	mol in 100 g sample	normalize (divide by smallest number)	round to whole numbers
MgSO_{4}	48.8%	48.8	120.366			
$\mathrm{H}_{2} \mathrm{O}$	51.2%	51.2	18.015			

The hydrate formula is $\mathrm{MgSO}_{4} \bullet 7 \mathrm{H}_{2} \mathrm{O}$

0421 - HW, \#6

An 11.75 g sample of a common hydrate of cobalt (II) chloride is heated. After heating, 0.0712 mol of anhydrous cobalt (II) chloride remains. What is the formula of this hydrate?

cpd	mass	molar mass	moles
$\mathrm{CoCl}_{2} \bullet \mathrm{nH}_{2} \mathrm{O}$			
CoCl_{2}			
$\mathrm{H}_{2} \mathrm{O}$			

element	number of each element	molar mass	mass of each element
Co	1	58.933	58.933
Cl	2	35.453	70.906

cpd	mass of cpd (g)	molar mass $(\mathrm{g} / \mathrm{mol})$	amount of cpd (mol)
$\mathrm{CoCl}_{2} \bullet \mathrm{nH}_{2} \mathrm{O}$	11.75		
CoCl_{2}			0.0712
$\mathrm{H}_{2} \mathrm{O}$			

element	number of each element	molar mass	mass of each element
H	2	1.008	2.016
O	1	15.999	15.999

cpd	mass of cpd (g)	molar mass of cpd $(\mathrm{g} / \mathrm{mol})$	amount of cpd (mol)
$\mathrm{CoCl}_{2} \bullet \mathrm{nH}_{2} \mathrm{O}$	11.75		
CoCl_{2}	9.24	129.839	0.0712
$\mathrm{H}_{2} \mathrm{O}$	2.51		

The hydrate formula is $\mathrm{CoCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

cpd	mass of cpd (g)	molar mass $(\mathrm{g} / \mathrm{mol})$	amount of cpd (mol)
$\mathrm{CoCl}_{2} \bullet \mathrm{nH}_{2} \mathrm{O}$	11.75		
CoCl_{2}	9.24	129.839	0.0712
$\mathrm{H}_{2} \mathrm{O}$	2.51	18.015	0.139
0.139 mol			
0.0712 mol			

Do Now

To mimic the rejuvenating effect of natural mineral springs, people bathe in warm water containing Epsom salt, a hydrate of MgSO_{4}. A 33.767 g sample was dried to give 16.490 g of anhydrous MgSO_{4}. What is the formula for Epsom salt?

To mimic the rejuvenating effect of natural mineral springs, people bath in warm water containing Epsom salt, a hydrate of MgSO_{4}. A 33.767 g sample was dried to give 16.490 g of anhydrous MgSO_{4}. What is the formula for Epsom salt?

cpd	mass	molar mass	moles
$\mathrm{MgSO}_{4} \bullet \mathrm{nH}_{2} \mathrm{O}$			
MgSO_{4}			
$\mathrm{H}_{2} \mathrm{O}$			

To mimic the rejuvenating effect of natural mineral springs, people bath in warm water containing Epsom salt, a hydrate of MgSO_{4}. A 33.767 g sample was dried to give 16.490 g of anhydrous MgSO_{4}. What is the formula for Epsom salt?

cpd	mass	molar mass	moles
$\mathrm{MgSO}_{4} \bullet \mathrm{nH}_{2} \mathrm{O}$	33.767		
MgSO_{4}			
$\mathrm{H}_{2} \mathrm{O}$			

To mimic the rejuvenating effect of natural mineral springs, people bath in warm water containing Epsom salt, a hydrate of MgSO_{4}. A 33.767 g sample was dried to give 16.490 g of anhydrous MgSO_{4}. What is the formula for Epsom salt?

cpd	mass	molar mass	moles
$\mathrm{MgSO}_{4} \bullet \mathrm{nH}_{2} \mathrm{O}$	33.767		
MgSO_{4}	16.490		
$\mathrm{H}_{2} \mathrm{O}$			

To mimic the rejuvenating effect of natural mineral springs, people bath in warm water containing Epsom salt, a hydrate of MgSO_{4}. A 33.767 g sample was dried to give 16.490 g of anhydrous MgSO_{4}. What is the formula for Epsom salt?

cpd	mass	molar mass	moles
$\mathrm{MgSO}_{4} \bullet \mathrm{nH}_{2} \mathrm{O}$	33.767		
MgSO_{4}	16.490		
$\mathrm{H}_{2} \mathrm{O}$	17.277		

element	number of each element	molar mass	mass of each element
Mg	1.000	24.305	24.305
S	1.000	32.065	32.065
O	4.000	15.999	63.996

cpd	mass	molar mass	moles
$\mathrm{MgSO}_{4} \bullet \mathrm{nH}_{2} \mathrm{O}$	33.767		
MgSO_{4}	16.490		
$\mathrm{H}_{2} \mathrm{O}$	17.276		

element	number of each element	molar mass	mass of each element
Mg	1.000	24.305	24.305
S	1.000	32.065	32.065
O	4.000	15.999	63.996
120.366			

cpd	mass	molar mass	moles
$\mathrm{MgSO}_{4} \bullet \mathrm{nH}_{2} \mathrm{O}$	33.767		
MgSO_{4}	16.490	120.366	
$\mathrm{H}_{2} \mathrm{O}$	17.276		

element	number of each element	molar mass	mass of each element
Mg	1.000	24.305	24.305
S	1.000	32.065	32.065
O	4.000	15.999	63.996

cpd	mass	molar mass	moles
$\mathrm{MgSO}_{4} \bullet \mathrm{nH}_{2} \mathrm{O}$	33.767		
MgSO_{4}	16.490	120.366	0.13700
$\mathrm{H}_{2} \mathrm{O}$	17.276		

element	number of each element	molar mass	mass of each element
Mg	1.000	24.305	24.305
S	1.000	32.065	32.065
O	4.000	15.999	63.996

cpd	mass	molar mass	moles
$\mathrm{MgSO}_{4} \bullet \mathrm{nH}_{2} \mathrm{O}$	33.767		
MgSO_{4}	16.490	120.366	0.13700
$\mathrm{H}_{2} \mathrm{O}$	17.276		

element	number of each element	molar mass	mass of each element
H	2	1.008	2.016
O	1	15.999	15.999

cpd	mass	molar mass	moles
$\mathrm{MgSO}_{4} \bullet \mathrm{nH}_{2} \mathrm{O}$	33.767		
MgSO_{4}	16.490	120.366	0.13700
$\mathrm{H}_{2} \mathrm{O}$	17.276		

element	number of each element	molar mass	mass of each element
H	2	1.008	2.016
O	1	15.999	15.999
18.015			

cpd	mass	molar mass	moles
$\mathrm{MgSO}_{4} \bullet \mathrm{nH}_{2} \mathrm{O}$	33.767		
MgSO_{4}	16.490	120.366	0.13700
$\mathrm{H}_{2} \mathrm{O}$	17.276	18.015	

element	number of each element	molar mass	mass of each element
H	2	1.008	2.016
O	1	15.999	15.999
18.015			

cpd	mass	molar mass	moles
$\mathrm{MgSO}_{4} \bullet \mathrm{nH}_{2} \mathrm{O}$	33.767		
MgSO_{4}	16.490	120.366	0.13700
$\mathrm{H}_{2} \mathrm{O}$	17.276	18.015	0.95900

element	number of each element	molar mass	mass of each element
H	2	1.008	2.016
O	1	15.999	15.999
18.015			

cpd	mass	molar mass	moles
$\mathrm{MgSO}_{4} \bullet \mathrm{nH}_{2} \mathrm{O}$	33.767		
MgSO_{4}	16.490	120.366	0.13700
$\mathrm{H}_{2} \mathrm{O}$	17.276	18.015	0.95900

The hydrate formula is $\mathrm{MgSO}_{4} \bullet \mathbf{7 H}_{2} \mathrm{O}$

cpd	mass	molar mass	moles
$\mathrm{MgSO}_{4} \bullet \mathrm{nH}_{2} \mathrm{O}$	33.767		
MgSO_{4}	16.490	120.366	0.13700
$\mathrm{H}_{2} \mathrm{O}$	17.276	18.015	0.95900

$\begin{aligned} n & =\frac{0.95900}{0.13700} \\ & =7\end{aligned}$

